
CAST IRON

TECHNICAL AND
PHYSICAL PROPERTIES

DIMENSIONAL TABLES
AND WEIGHTS

TECHNICAL PECULIARITIES OF THE CONTINUOUS CAST IRON

The production of the continuous casting is made by melting the metal in a melting furnace, with subsequent pouring of the liquid metal into the casting furnace (*see sketch above*). In the casting furnace, the exit point of the bars is situated horizontally and in the lowest part of the furnace, therefore during the production the bar receives a continuous supply of liquid metal, able to compensate the shrinkage caused by the cooling of the cast iron in an optimal way (*continuous feed*). Any other potential cause of defects, such as the presence of refractory material from the furnace or gas bubbles, are naturally pushed upwards and eliminated as slags due to their lower specific weight, avoiding the risk of inclusions or blowholes as it may happen in the casting point, they would be in any case pushed upwards (*for the same above explained reasons*) and remain trapped in the external skin of the bar (see the machining allowance recommended) leaving the internal part perfectly intact and compact.

The cooling of the bar takes place in a forced manner, through a graphite mold which determines the section of the bar (see the section of the casting furnace and the cooling mold, above mentioned). Inside, this mold is in direct contact with the metal while outside it is inserted in a cavity with forced passage of coolant to facilitate the heat dissipation; this confers to the continuous cast iron bars a better compactness of the structure compared to the castings produced by sand molding, in fact, thanks to the forced cooling, the graphite in solution does not have " the time " required to form cores of large sizes. This " forced cooling " confers to the bar another of the typical characteristics of the continuous casting that is the " Double Structure ". Looking at the section of a bar in continuous casting, a thin outer ring (approximately between 5 and 20 mm., in proportion to the sizes of the bar) and an inner area with a different color will be clearly noticed; this difference is given by the external mainly ferritic structure and the internal mainly pearlitic structure which is formed as a result of the quick cooling of the outside and the " annealing " effect that the inside metal, still liquid, exerts on the outside already solidified metal.

Advantages of the continuous casting compared to the castings in sand molding

- 1 Absence of irregular shrinkages due to poor feed.
- 2 Absence of gas porosities or inclusions of sand or slag.

3 - Concentration of any eventual defect of blowholes or inclusions on the external area of the bar, normally removed during the machining.

4 - Better compactness of the structure due to the forced colling and the strong ferrostatic pressure of the liquid metal inside the furnace.

5 - Very short delivery times, as the material is normally ready in stock in standard sizes and grades.

CONTINUOUS CAST IRON BARS - (page 02) Classification and General Technical Features of the Cast Iron.

The reference Standard which defines the grades and technical features of the Continuous Cast Iron is UNI EN 16482:2014

CAST IRON with LAMELLAR GRAPHITE and CAST IRON with <u>SPHEROIDAL GRAPHITE</u> The cast iron is an iron-carbon alloy with a carbon content over 2,1%.

The carbon, in solution in a liquid state, solidifies in the form of graphite. According to the shape of the solidified graphite the cast iron is divided into two main groups: **Lamellar Cast Iron and Spheroidal Cast Iron**. These two main groups are then further divided into two subgroups, according to the shape in which the iron matrix solidifies (ferrite or pearlite), therefore there will be **Ferritic Cast Iron** or **Pearlitic Cast Iron** both Lamellar and Spheroidal.

Ferritic Cast Iron and Pearlitic Cast Iron

The **ferritic cast iron** is characterized by poor wear resistance by rubbing, lower hardness, higher dimensional stability in contact with the heat, more malleability (spheroidal cast iron) and better heat dissipation. The totally ferritic cast iron is obtained by heat treatment of solution of the pearlite (treatment of complete ferritization).

The **pearlitic cast iron** has better wear resistance, higher hardness, better rigidity and higher mechanical properties compared to the ferritic cast iron.

Cast Iron with Lamellar Graphite - GJL -
--

The primary characteristic of this material is given by the shape of the graphite which solidifies in the form of lamellae, generating a discontinuity of the ferrous part of the alloy. This provides an improvement of the "self-lubricating" effect of the graphite (the "seizure" effect is extremely reduced), the crushing into small chips during the machining (no need to "deburr" the machined parts) and the lack of deformability (fragility, lack of elongation before the breaking) of this material.

Cast Iron with Spheroidal Graphite - GJS -

The primary characteristic of this material is given by the shape of the graphite which solidifies in the form of spheroids, maintaining continuity in the ferrous part of the alloy. This provides a higher tensile strength compared to the lamellar cast iron, a significant elongation before the breaking but it remarkably limits the "self-lubricating" effect of the graphite and there is the formation of small chips during the machining, however there is no need to "deburr" the machined parts as in the case of steel.

Nomenclature of the cast iron according to UNI EN 16482: 2014

Lamellar Cast Iron: EN-GJL-XXXC

EN = European Norm
GJL = Cast Iron with Lamellar Graphite
XXX = Value of tensile strength Rm
(expressed in Mpa)
C = Produced in Continuous Casting

Ghise Sferoidali: EN-GJS-XXX-YYC
EN = European Norm
GJS = Cast Iron with Spheroidal Graphite
XXX = Value of tensile strength Rm
(expressed in Mpa)
YY = Percent Elongation

C = Produced in Continuous Casting

Standard length of the bars

The standard length of the bars is normally 3.000 mm. with tolerance of -0 / + 150 mm.

The cutting of the bars is done by breaking therefore the surface of the cutting section on the raw bars will always be irregular. Over Ø 400 mm. and over 250 x 250 mm. the lengths may change and be 1'000, 1'880 and 3'000 mm., therefore it is recommended to check the effective length when placing the order. Special lengths can be produced on demand.

CONTINUOUS CAST IRON BARS - (page 03) Machining Allowance, Dimensional Tolerance and Areas of Sample-Taking for test pieces

Minimum machining allowance

The machining allowance is the superficial layer which has to be removed from the bar produced in continuous casting, in order to eliminate eventual surface defects such as: the outer ring with different structure, exfoliations, eventual surface imperfections typical of the production in continuous casting like ovalizations or growths

I LUOMOTOR "II" OR	continuous casting like ovalizations or growths.									
Diameter "D" or	Minimum Machining Allowance to be removed, in mm. ^(b)									
Thickness "B" ^(a)	Lamellar Ca	st Iron - GJL -		dal - GJS -						
in mm.	Round Bars	Rectangular Bars	Round Bars	Rectangula	ar Bars					
20 < (D o B) ≤ 50	2,0 mm.	2,5 mm.	3,0 mm.	3,5 mm.						
50 < (D o B) ≤ 100	3,0 mm.	3,5 mm.	4,5 m	m.						
100 < (D o B) ≤ 200	4,0 mm.	4,5 mm.	5,5 m	5,5 mm.						
200 < (D o B) ≤ 300	6,0 mm.	6,5 mm.	7,0 mm.	7,5 mm.						
300 < (D o B) ≤ 400	7,0 mm.	7,5 mm.	8,0 mm.	8,5 m	m.					
400 < (D o B) ≤ 500	9,0 mm.	9,5 mm.	10,0 mm.	10,5 m	ım.					
500 < (D o B) ≤ 650	11,0 mm.	11,5 mm.	12,5 m	ım.						
^(a) In the rectangular bar	s, the longest size "E	3" shall be considered	as the thickness.							
^(b) The machining allowa	Dimensi	onal								
round bars and on half o				Tolerar	nce					
				Dimension	Tolerance					
	1		1							
<u> / </u>				(D)-(H)-(B)	mm.					
N I M				≤ 100 >100 ≤150	+/-1 +/-1,5					
	1 I		>150 ≤300	+/-2,0						
D1	B1		B	The tolerance ch						
- U -	B		-	the beginning to the casti						
Maximum Oval	ization on Round	bars and maximum	Growth on Rect		-					
Diameter "D" mm.		ound section	Bars with Rec	-						
Thickness "B" mm.		Spheroidal Cast Iron	No. of Concession, Name of	· · ·						
$20 < (D \circ B) \le 50$		before the order	5,0 mm.	5,0 mm.						
$50 < (D \circ B) \le 100$		2,0 mm.	7,0 mm.							
$100 < (D \circ B) \le 200$	2,0 mm.	3,0 mm.	10,0 mm.	7,0 mm. 10,0 mm.						
$200 < (D \circ B) \le 300$	4,0 mm.	4,0 mm.	12,0 mm.	12,0 m						
$300 < (D \circ B) \le 400$	5,0 mm.	5,0 mm.	15,0 mm.	15,0 m						
(D o B) > 400		before the order		before the orde						
(/			j. e na j. e na							
All dimensions	The ovalization is		The Growth is defined							
mentioned in this table	defined as the		as the maximum		- 1. (1) 1. (1) 1. (1)					
are expressed in	maximum measurable diameter on the round		measurable thickness/width on the							
millimeters.	section.		rectangular section.							
	L									
Tolerance on the straightness of the bars "F"										
	-				7					
Length "L" (mm)	Unannealed	Annealed/ferritized								
Length "L" (mm) 1'000	Unannealed 2 mm.	Annealed/ferritized 3 mm.	<u>ц</u>							
Length "L" (mm) 1'000 2'000	Unannealed 2 mm. 4 mm.	Annealed/ferritized 3 mm. 6 mm.								
Length "L" (mm) 1'000	Unannealed 2 mm.	Annealed/ferritized 3 mm.								
Length "L" (mm) 1'000 2'000 3'000	Unannealed 2 mm. 4 mm. 6 mm.	Annealed/ferritized 3 mm. 6 mm.	-	erties						
Length "L" (mm) 1'000 2'000 3'000	Unannealed 2 mm. 4 mm. 6 mm.	Annealed/ferritized 3 mm. 6 mm. 9 mm.	-	D = Diame	ter					
Length "L" (mm) 1'000 2'000 3'000	Unannealed 2 mm. 4 mm. 6 mm.	Annealed/ferritized 3 mm. 6 mm. 9 mm.	-							

CONTINUOUS CAST IRON BARS - (page 04) Technical Properties of the Lamellar Cast Iron produced in continuous casting										
Material Coding		Diameter of the Bar	Min. Tensile Strength	Structure of the matrix	*Hardness Brinell <i>HB</i>					
Designation	Number	D in mm.	<i>Rm</i> in Mpa	(for information only)	min.	max.				
	EN-GJL-150C 5.1102		110	Ferritic.	110	180				
EN-GJL-150C			100	Obtained by annealing	Denomination					
Material pro	oduced by	100< <i>D</i> ≤200	90	heat treatment of EN-	according to HB:					
annealing of EN-GJL-250C		200< <i>D</i> ≤400	80	GJL-250C	EN-GJL-HB150					
EN-GJL-200C 5.1202		20< <i>D</i> ≤ 50	155		140	210				
		50< <i>D</i> ≤100	140	Ferritic	Denomination					
Material produced only on specific demand.		100< <i>D</i> ≤200	125	Pearlitic	according to HB:					
		200< <i>D</i> ≤400	115		EN-GJL-HB175					
EN-GJL-250C	5,1203	20< D≤ 50	195		170	240				
LN-03L-2300	5.1205	50< <i>D</i> ≤100	180	Pearlitic	Denomination					
Identificat	ion color	100< <i>D</i> ≤200	165	Ferritic	according to HB:					
Identificat		200< <i>D</i> ≤400	155		EN-GJL-HB200					
EN-GJL-300C	5,1308	20< D≤ 50	220		200	290				
EN-GJL-300C	5.1306	50< <i>D</i> ≤100	205	Pearlitic	Denom	nination				
Identification	color	100< <i>D</i> ≤200	195	prevalence	accordin	ig to HB:				
Identification	COIOI	200< <i>D</i> ≤400	185		EN-GJL	-HB250				
Glass Mold	Iron GMI	All sizes								
		Special cast		Ferritic, obtained by annealing heat	130	210				
Identificat	ion color	construction contact with r		treatment	100	210				

* The hardness of the cast iron decreases with the increase of the diameter or thickness of the bar. In the lamellar cast iron, if the HB hardness has prevalent importance compared to the tensile strength, when placing the order the cast iron shall be required according to the specific classification for the hardness EN-GJL-HBxxx.

Microstructure of the Lamellar cast iron

EN-GJL-150C	EN-GJL-250C	EN-GJL -300C

In the surface zone of the bar the graphite structure is Type "I", Configuration "D" (max.15% E & A). In the centre of the bar the graphite structure is Type "I", Configuration "A" (max.20% B,D & E).

G.M.I. Cast Iron (Glass Mold Iron)

On the whole section of the bar the graphite structure is Type "I", Configuration "D" and Dimension "6-8", in order to ensure high compactness. This Cast Iron, purposely developed for the construction of molds for the glass industry, has an extremely fine graphite, which allows the achievement of an excellent surface finishing (mirror), very good workability, good thermal conductivity and improves the metal-spray coating.

						(page 05) produced in	-	01-09-'17] nuous casti	na	
	Material Coding		ter			Tensile	Α	Structure	0	rdness
waterial Coding			Bar	rieid	point	Strength	%	of the	Brin	ell HB
Designation	Numbe	er D in m	m.	R p0,2	- Мра	<i>R</i> m in Mpa	min	matrix	min.	max.
EN-GJS-350-22C-LT	5.3120) 20< D≤			20	350	22	Ferritic		
		60< D≤			10	330	18	Heat	-	170
<pre>#produced only on dem</pre>	d only on demand#		400		00	320	15	treatment		
EN-GJS-350-22C-RT	5.312	20< D≤			20	350	22	Ferritic		170
		60< D≤			20	330	18	Heat treatment	-	170
#produced only on dem	and#	120< D≤			10	320	15			
EN-GJS-350-22C	5.3122	20< D≤			20	350	22	Ferritic		170
Hannahara da sa ka sa da sa		60< D≤			20	330	18	Heat treatment	-	170
<pre>#produced only on dem</pre>	and#	120< D≤			10	320	15			
EN-GJS-400-18C-LT	5.3123	3 20< D≤			40	400	18	Ferritic	100	100
	<u> </u>	60< D≤			30	380	15	Heat	120	180
#produced only on dem	and#	120< D≤	_		20	360	12	treatment		
EN-GJS-400-18C-RT	5.3124	1 20< D≤		100.0	50	400	18	Ferritic		100
		60< D≤	-		50	390	15	Heat	120	180
#produced only on dem	and#	120< D≤	-		40	370	12	treatment		
EN-GJS-400-18C	5.3125	<u>20< D≤</u>	-		50	400	18	Ferritic		
<pre>#produced on demand #</pre>		60< D≤			50	390	15	Heat	120	180
Identification	color				40	370	12	treatment		
EN-GJS-400-15C	5.3126	<u>20< D≤</u>			50	400	15	Ferritic Heat	120	
<pre>#produced on demand#</pre>		60< D≤			50	390	14			180
Identification	color			2	40	370	11	treatment		
EN-GJS-400-7C	5.3202	<u>20< D≤</u>			50	400	7	Ferritic/		
<pre>#produced on demand #</pre>		60< D≤			50	390	7	Pearlitic	140	210
Identificatio	n colo				40	370	11			
EN-GJS-500-14C	5.3129	20< D≤			00	500	14			220
<pre>#produced on demand #</pre>		60< <i>D</i> ≤	-		90	480	12	Ferritic	180	
Identification	colo	120< D≤	400	3	60	470	10			
EN-GJS-500-7C	5.3203	3 20< D≤			20	500	7	Ferritic/	. – .	
•normally in stock		60< D≤			00	450	7	Pearlitic	150	240
Identificatio	n colo				90	420	5			
EN-GJS-600-3C	5.3204	20< D≤	_		70	600	3	Pearlitic/		
•normally in stock		60< D≤			60	600	2	Ferritic	200	290
Identificatio	n colo				40	550				
EN-GJS-700-2C	5.3303	20< D≤			20	700	2	Mainly	N	
<pre>#produced on demand #</pre>		60< D≤			00	700	2	Pearlitic	210	310
Identification					80	650	1		5	
Austempered Ductil	-		· · ·			n demand #		Identificat	ion co	lor
Designation Pro 2		Tensile S. <i>Rm</i> -Mpa*	A %		ess HB	A.D.I. is an	alloy	ved ductile	iron	with the
	Rp0,2 - Мра^ К			min*	max*	addition of Cu, Ni and Mo. The heat treatmen				
Grade 1 550 Grade 2 700		860	10 7	269	321	consists of				
Grade 2 700 Grade 3 860		1'050 1'200	4	302 341	363 444	quenching at obtain an aus		•		
Grade 3 860 Grade 4 1'070		1'400	4	341	444 477	assures a g				
						ultimate tensi				-
*The referenced value auster			ined	atter the	9			•		
austempering process. see the properties in the table).										

Other Technical Properties of the Cast Iron with Spheroidal Graphite.

Properties	Unit of	No.			
Topenties	measure	GJS-500-7C	GJS-600-3C	GJS-700-2C	GJS-500-14C
Cutting Resistance	Мра	450	540	620	not referenced
Torsion Resistance	Мра	450	540	620	not referenced
Modulus of Elasticity <i>E</i>	GN/m ²	169	174	176	170
Poisson Coefficient	-	0,275	0,275	0,275	0,28 - 0,29
Fatigue Limit unnotched (Ø 10,6mm)	Мра	224	248	280	225
Fatigue Limit notched (Ø 10,6mm)	Мра	134	149	168	140
Compressive Strength	Мра	800	870	1'000	not referenced
Heat Conductivity at 200°C.	W/ (K∙m)	35,2	32,5	31,1	4
Specific Heat Capacity from 20° to 500°C.	J/ (Kg∙K)	515	515	515	-
Coefficient of Linear Expansion from 20° to 400°C.	μm/ (m•K)	12,5	12,5	12,5	-
Resistivity	μΩ•m	0,51	0,53	0,54	not referenced

CAST IRON PRODUCED BY CHILL CASTING - (page 07)

Main characteristics and peculiarities:

To obtain a compactness in the structure of the cast iron even higher than the continuous casting, it is possible to realize bars cast in steel moulds (*shells*). With this method any type of cast iron can be produced.

The classification is the same as the cast iron produced in continuous casting, with the replacement of the letter " C " (continuous casting) with the letter " K " (chill casting) (i.e.: GJL-250K or GJS-500-7K). Normally this production method is used to manufacture blocks with big sizes, in order to take advantage of the distinctive features of this production system; with this casting technology, in fact, the cooling of the metal happens more quickly than the normal sand casting and in a more uniform way than the production in continuous casting, by giving a very homogeneous and compact structure to the cast iron, which allows to obtain even on large castings the following peculiarities:

• General improvement of the mechanical and technological properties, due to the better compactness of the structure.

• Improvement of the workability, thanks to the higher homogeneity of the casting.

 Particular predisposition towards surface treatments such as hardening and coatings (chrome plating, nickel plating, polishing etc ...) with achievement of the best possible performance in cast iron.

• Better compactness and homogeneity, which make these castings particularly suitable for applications in the hydraulic field, even for high pressures.

Indicatively, the feasible sizes are the following:

Round: from Ø 130 to Ø 660 mm. in length of 1'020 mm.

from Ø 680 to Ø 1'200 mm. in length of 550 mm. (unless otherwise agreed)

Tubes: max. outside Ø 1'170 mm. and min. internal Ø 250 mm. with max. length of 900 mm. and min. wall thickness of 40 mm.

Square: up to 500 x 500 x 1'020 mm.

Rectangles: up to 340 x 610 x 1'020 mm.

Blocks or Plates: up to 1'400 x 1'120 x 200 mm.

On demand it is also possible to manufacture different sizes than the above mentioned ones, therefore we recommend to consult our sales department to check the feasibility of the required dimensions.

Usually all bars or blocks are supplied pre-machined or milled on 4 sides, with a tolerance of +1 / +3 mm., and cut on the length (*on specific demand it is possible to have also the length as milled or turned*). In case of bushings, the tolerance on the inside Ø will be of -1 / -3 mm.

Delivery time and production:

Due to the wide range of sizes feasible with this method of production, normally only some sizes of round, square and rectangle are kept in stock, therefore we recommend to check the availability at every demand. In case the material is not ready in stock, the delivery times will be defined in the offer, as they can change according to the workload of the production facilities.

CASTI	RON: DIME	ENSIONAL TAE	BLES AND	THEORETIC	AL WEIGH	TS PER METER	R - (page 08)	
	Roi	und Cast Iron		Rectangular Cast Iron				
Ø mm.	Kg/m.	Ø mm.	Kg/m.	≠ mm.	Kg/m.	≠ mm.	Kg/m.	
20	2,3	410	959	40 x 20	6	150 x 90	98	
30	5	420	1007	40 x 25	7	150 x 100	109	
35	7	430	1056	50 x 30	11	160 x 60	70	
40	9	450	1156	50 x 40	15	160 x 80	93	
45	12	500	1428	60 x 30	13	160 x 100	116	
50	14	530	1604	60 x 40	19	170 x 140	173	
55	17	550	1727	70 x 30	15	180 x 60	79	
60	21	600	2056	70 x 40	20	180 x 90	118	
65	24	650	2412	70 x 50	26	180 x 100	131	
70	28	Square C	Cast Iron	70 x 60	31	200 x 100	145	
75	32	≠mm.	Kg/m.	80 x 30	18	205 x 60	89	
80	37	30 x 30	7	80 x 40	23	205 x 85	127	
85	41	40 x 40	12	80 x 50	29	210 x 50	76	
90	46	45 x 45	15	80 x 60	35	210 x 130	199	
95	52	50 x 50	18	90 x 30	20	210 x 160	244	
100	57	55 x 55	22	90 x 40	26	220 x 170	272	
105	63	60 x 60	26	90 x 50	33	230 x 30	50	
110	69	65 x 65	31	90 x 60	39	245 x 165	294	
115	76	70 x 70	36	90 x 70	46	250 x 190	345	
120	82	75 x 75	41	100 x 30	22	300 x 150	327	
125	89	80 x 80	47	100 x 40	29	320 x 50	116	
130	97	85 x 85	53	100 x 50	36	320 x 60	140	
135	104	90 x 90	60	100 x 60	44	320 x 100	233	
140	112	95 x 95	66	100 x 70	51	387 x 311	875	
145	120	100 x 100	73	100 x 80	58	400 x 50	145	
150	129	110 x 110	88	110 x 40	32	420 x 80	244	
160	146	120 x 120	105	110 x 50	40	420 x 100	305	
170	165	130 x 130	123	110 x 60	48	420 x 120	366	
180	185	140 x 140	143	110 x 70	56	457 x 317	207	
190	206	150 x 150	164	110 x 90	72	520 x 100	378	
200	228	160 x 160	186	120 x 40	35	520 x 120	453	
210	252	170 x 170	210	120 x 50	44	520 x 480	1815	
220	276	180 x 180	236	120 x 60	52	551 x 501	2007	
230	302	190 x 190	262	120 x 70	61	558 x 355	1440	
240	329	200 x 200	291	120 x 80	70	558 x 406	1647	
250	357	210 x 210	321	120 x 90	79	560 x 515	2097	
260	401	220 x 220	352	130 x 50	47	570 x 530	2196	
270	416	230 x 230	385	130 x 60	57	609 x 260	1151	
280	448	240 x 240	419	130 x 70	66	610 x 410	1818	
290	480	250 x 250	454	130 x 80	76	730 x 95	504	
300	514	260 x 260	492	130 x 100	95	780 x 180	1021	
310	549	280 x 280	570	140 x 50	51	Cast Iron 1/2 F		
320	585	300 x 300	654	140 x 60	61	D. x ≠. mm.	Kg/m.	
330	622	330 x 330	792	140 x 70	71	90 x 48	25	
340	660	360 x 360	942	140 x 100	102	94 x 52,5	29	
350	700	470 x 470	1606	140 x 110	112	108 x 58	36	
360	740	500 x 500	2199	150 x 30	33	115 x 63	42	
370	782					•		
380	825						e understood that	
390	869		•				on, please contac	
000	000	our sales depa	rtment, Bigg	er sizes can be	realized by	chill casting		

CAST IRON PRODUCED IN CONTINUOUS CAST - (pagina 09) [rev.14-02-2018] Special cast irons, produced only on request, with minimum production batches.

Spheroidal Perlitic Cast Iron "WRI-100"

The spheroidal cast iron WRI-100 is an "out of standard", specifically studied and realized for the contruction of core boxes, plates and models to use on high production green molding machineries. It can also be used for the realization of stamps in general.

The WRI-100 is essentially a spheroidal cast iron of the type GJS.700-2C conveniently modified, in a way to make it interchangeable with the steel 40CrMnMo7 (AISI P20), for determined application

Medium Chemical Analysis										
C% Si%	Mn%	P%	S%	Cu%	Ni%	Mo%	Mg%			
3,3 3,8 2,5 3,1				0,1 max	,	0,1 max	0,03 0,05			
				perlitic m						
The core presents a matrix with over 80% of perlite and some ferrite.										
the carbides are less than 5% and well dispersed.										
Graphite of Form I and II (>80%) with dimension 5 - 8.										
	General Mechanical Properties									
Thickness: Kg./dm ³ 7,2										
Brinell Hardness: HB. 2	230 - 300		1			AL ALS	SLA			
Shear Strenght: Mpa 62			4	2020			EL.			
Traction Strenght: Mpa			S.	6 6	ner	0-0-				
Torsional strenght: Mp			1		The state of the s					
Allungamento percenti				en esta	pre de la conte	The second				
Compression Strenght			1	Exa	mple of ap	plication.				
Thermal Conductivity a										
Linear Expansion Coef	f ficient (c	la 20°C a 4	00°C.): μm	/(m*K) 12,5						
Modulus of elasticity E	1		/							
Rotating Fatigue Limit			/ /							
Rotating Fatigue Limit			, ,		/					
				es of WRI						
Good firmness of the n	nachine	dsurface , t	hanks to th	e spheroida	I graphite a	and the perli	te.			
Good wear resistance	\ I		/ ·		and the second sec					
Good corrosion and th										
Great utensile machina				•			ts.			
No faults inside the ma		-				A second s				
Opportunity of thermal	l quenchi	ing treatme	ent with re	aching hard	nesses up	to 55 - 60 H	RC			
				on reques		2A				
380 x 260 x 2'300mm.	500 x 10	00 x 2'000m	ım. 650	x 100 x 2'25	0mm. 65	50 x 200 x 2	'250mm.			
575 x 90 x 2'000mm.	610 x 41	10 x 2'250m	nm. 650	x 140 x 2'25	0mm I	ther section	s to be			
The informati	ions repol	rted on this	table are t	o be conside	ered of gen	eral nature.				