FUSIONE A MODELLO

 CARATTERISTICHE TECNICHE E FISICHE

SERVIZIO DI RAPPRESENTANZA COMMERCIALE DI FONDERIE - (Pagina 01)

	TAD	ELLA CEI	MEDALET	DELLE CHISE I	PRODOTTE IN FO	MDEDIA		
GHISA A GR				DELLE GHISE I	PRODUITE IN FO	UNI EN 15	61	
Tipologia di ghisa	Spessor	pessore di parete eterminante (mm) Resistenza a trazione Rm. Resistenza a trazione Rm. Valori obbligatori su provette prevedibili			Classificazione in bas Durezza Brinell HB			
Designazione simbolica	> di	≤a	colate separata- mente N/mm²	colate con il getto e ad esso collegato N/mm²	N/mm² (valori minimi)	Designazione simbolica	min.	max.
	5	10		-	250		200	275
	10	20		-	225		180	255
EN-GJL-250	20	40	DA 250	210	195	EN-GJL-HB215	160	235
EN-GJL-250	40	80	A 350	190	170	EIN-GJL-HBZ 15	145	215
	80	150		170	155	9.50		
	150	300		160		13. WE		
	10	20		-	270	-170	200	275
	20	40	1	250	240	0,5//	180	255
EN-GJL-300	I-GJL-300 40		DA 300 A 400	220	210	EN-GJL-HB235	165	235
	80	150	A 400	210	195			
	150	300		190	.10 - 11			
	10	20		-	315		1	
	20	40		290	280	_	200	275
EN-GJL-350	EN-GJL-350 40 80	DA 350	160	250	EN-GJL-HB255	185	255	
	80	150	A 450	230	225	_		
	150	300	0-0	210	-			
GHISA A GR	AFITE SE	FROIDAL	F	, A		UNI EN 15	63	
GIIIOA A GIV		1917	301			ONI LIV 13	T	
Tipologia di ghisa	Res. a trazione Rm N/mm² min.	Carico unitario di Snerva- mento Rp _{0,2} N/mm² min.	Allunga- mento	Durezza Brineii				ıttura
Designazione simbolica	Rm N/mm² min.	Rp _{0,2} N/mm² min.	A % min.	Designazione	simbolica HB			
EN-GJS-400-18	400	250	18	EN-GJS-l	HB150	DA 130 A 175		rrite
EN-GJS-400-15	400	250	15	EN-GJS-H	HB155 DA 135 A 180		Fe	rrite
EN-GJS-450-10	450	310	10	EN-GJS-F	HB185	DA 160 A 210	Fe	rrite
EN-GJS-500-7	500	320	7	EN-GJS-ŀ	HB200	DA 170 A 230	Ferrite + Perlite	
EN-GJS-600-3	600	370	3	EN-GJS-ŀ	HB230	DA 190 A 270		lite + erlite
EN-GJS-700-2	700	420	2	EN-GJS-I	EN-GJS-HB265			erlite

EN-GJS-HB300

DA 245 A 335

Perlite

EN-GJS-800-2

800

480

SERVIZIO DI RAPPRESENTANZA COMMERCIALE DI FONDERIE - (Pagina 02)

Tabella delle Ghise Speciali, Prodotte in Fonderia (Tabella 1 di 2)

Austempered Ductil Iron - A.D.I.

La principale caratteristica delle ghise A.D.I. consiste nella capacità di raggiungere, dopo trattamento termico di austenizzazione, elevatissime caratteristiche di resistenza meccanica pur mantenendo una buona lavorabilità all'utensile, grazie alla struttura ausferritica o bainitica.

Codifica Ghisa	Spessore del	min. Resistenza a	min. Snervamento	Allungamento
Codifica Gilisa	getto "t" in mm.	trazione R _m N/mm ²	$Rp_{0,2} \text{ N/mm}^2$	A % minimo
ISO	<i>t</i> ≤ 30	800	500	10
17804/JS/800-10	30 < <i>t</i> ≤ 60	750	500	6
17004/33/000-10	60 < <i>t</i> ≤ 100	720	500	5
ISO	<i>t</i> ≤ 30	900	600	8
17804/JS/900-8	$30 < t \le 60$	850	600	5
17004/33/900-0	60 < <i>t</i> ≤ 100	820	600	4
150	<i>t</i> ≤ 30	1'050	700	6
ISO 17804/JS/1050-6	30 < t ≤ 60	1'000	700	4
	60 < <i>t</i> ≤ 100	970	700	3

Ghisa Bianca Resistente all'Usura da Abrasione

I getti realizzati con le Ghise Bianche Resistenti all'Usura sono utilizzati principalmente nel settore minerario, nelle attività di movimentazione terra, laminazione e tutti quei settori in cui è richiesta un'elevata resistenza ai minerali ed altri solidi abrasivi. La resistenza all'abrasione, dipende dalla struttura e dalla durezza tipica di queste leghe ad alto contenuto di Nichel e Cromo.

Ghise al Nichel-Cromo, resistenti all'Abrasione

	Chief di Monor Cromo, redictoriti dii Abracione.							
Codifica Ghisa	Durezza	CA	Compo	sizione C	himica	Perce	entuale	
Simbolo e Numero	Vikers HV	C	Si	Mn	P	S	Ni	Cr
EN-GJN-HV520	520 minimo	da 2,5	max	max	Max.	Max.	da 3,0	da 1,5
EN-JN2029		a 3,0	0,8	0,8	0,10	0,10	a 5,5	a 3,0
EN-GJN-HV550	550 minimo	da 3,0	max	max	Max.	Max.	da 3,0	da 1,5
FNIN2039		a 3 6	l na	l กล	ln 10	0.10	a 5 5	a 3 0

Struttura composta da carburi eutettici tipo M_3C (M=Fe,Cr) in matrice composta da martensite ed eventualmente bainite, insieme ad austenite residua o carburi complessi di tipo M_7C_3 e M_3C (definiti getti in ghisa al 9%Cr 5%Ni)

da 1,5

a 2,5

da 0.3

a 0,8

Max. Max.

0.08 0.08

da 4,5

a 6,5

da 8.0

a 10,0

da 2,5

a 3,5

600 minimo

	Ghise ad Alto Tenore di Cromo, Resistenti all'Abrasione.									
Codifica Ghisa	Durezza Vikers	Comp	oosizione Chimica Percentuale							
Simbolo e Nr.	HV	C*	Si	Mn	Р	S	Cr	Ni	Мо	Cu
EN-GJN-HV600 (XCr11) EN-JN3019	600 minimo	da1,8 a 2,4 da2,4 a 3,2 da3,2 a 3,6	11101	da 0,5 a 1,5	max 0,08		da 11,0 a 14,0	2,0	Max. 3,0	Max. 1,2
EN-GJN-HV600 (XCr14) EN-JN3029	600 minimo	da1,8 a 2,4 da2,4 a 3,2 da3,2 a 3,6	1110	da 0,5 a 1,5	max 0,08		da 14,0 a 18,0	2,0	Max. 3,0	Max. 1,2

*Per ogni gamma di tenore di Cromo, esistono tre differenti gamme di tenore di Carbonio

EN-GJN-HV600

EN-JN2049

Struttura composta da carburi complessi in matrice prevalentemente martensitica (allo stato indurito), ma che può contenere austenite residua o altre strutture di trasformazione dell'austenite.

SERVIZIO DI RAPPRESENTANZA COMMERCIALE DI FONDERIE - (Pagina 03)

Tabella delle Ghise Speciali, Prodotte in Fonderia (Tabella 2 di 2)

Ghisa a Grafite Sferoidale Legata al Silicio - Molibdeno (SiMo)

Questa ghisa a grafite sferoidale e legata al Silicio e Molibdeno, è generalmente impiegata allo stato ricotto con struttura ferritica. L'utilizzo principale è per realizzare getti da impiegare alle alte temperature (≤ 750°C.), dove siano richieste doti di elevata resistenza agli shock termici, all'ossidazione ed allo scagliamento a caldo. Questo materiale trova largo impiego nella realizzazione di motori termici (settore automotive).

Composizione Chimica percentuale

Percenti	uali Indicative		Perce	entuali Impegr	native	
С	Mn	Mg*	Si	Мо	Р	S
3,6	0,3	0,01 ÷ 0,05	4,0 ÷ 4,5	1,0 ÷ 1,5	≤ 0,05	≤ 0,015

*In caso il trattamento di sferoidizzazione avvenga in siviera, il tenore di Magnesio può essere compreso tra 0.03 e 0.08

Caratteristiche Meccanice rilevate a Temperatura Ambiente ^(a)							
Resistenza trazione	Limite di Snervamento	Allungamento %	Durezza Brinell				
– 1 (1) (2)	25	A.F. mailin					

R min. (N/mm²)	Rs min. (N/mm²)	A5 min.	HB.
490	375	8	da ≥ 200 a < di 240

^(a) Caratteristiche rilevate su provette standard colate a parte o su saggi prelevati dai getti senza trattamento termico (AS Cast), in posizioni indicate sul disegno o concordate con il produttore.

Resistenza alla Trazione a temperature Elevate

Temperatura di prova in °C.	Resistenza alla Trazione R in N/mm²
300	490
400	410
500	295
600	145
700	80

Caratteristiche Strutturali

Matrice: prevalentemente ferritica con carburi sparsi ≥ 15% (senza trattamento termico).

Grafite: Forma IV - Tipo A - Dimensioni 5÷7 è tollerata la presenza di grafite non sferoidale <10%

Caratteristiche Fisiche e Tecnologiche (valori indicativi)

Massa Volumica a 20°C.: 7,1 Kg./dm³

Modulo di Elasticità Longitudinale E.: 157'000 N/mm²

Modulo di Elasticità trasversale G.: 62'000 N/mm²

Rsistività Elettrica: 40 - 105 μΩcm.
Calore Sopecifico a 20 - 100°C.: 0,607 J/(g • K)

Coefficiente di Conducibilità Termica a 100°C.: 0,251 W/(cm • K)

C.. 0,251 W/(CIII • K)

Coefficiente di Dilatazione Termica: $20 - 200^{\circ}\text{C} : 11,4 \text{ MK}^{-1}$ 20 - 540°C : 12,1 MK⁻¹

20 - 815°C : 13.3 MK⁻¹

Lavorabilità all'utensile: Buona

Saldabilità: Difficoltosa

Su richiesta, possono essere prodotte anche altre ghise speciali, il nostro laboratorio tecnico-metallurgico è a Vostra completa disposizione per valutarne la fattibilità, in base alle caratteristiche tecniche richieste.